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Abstract 

Introduction: Unobtrusive bed mattress sensors such 
us the electromechanical film transducer (Emfit) record 
the heart's activity, breathing, and body movements with 
clinical applications ranging from epilepsy to sleep 
disorders. The mechanical activity of the heart recorded 
using these sensors is known as ballistocardiogram 
(BCG). However, BCG shape changes on position, patient, 
and mattress. Aim: In this study, we isolate a position-
independent heart signal designed to retrieve the heart 
activity recorded using an Emfit mattress sensor using 
extended polysomnography (PSG) recordings as a 
reference. Methods: We used spectral and source 
separation techniques to infer the heart's Emfit Pulse (EP). 
We validated the resulting signal using representative 10-
minute normal breathing epochs extracted from the PSG 
from 33 subjects and by estimating the heart rate (HR) 
from the EP and compared it against the 
electrocardiogram (ECG) using non-overlapping one-
minute windows. Results: Results show a signal similar in 
shape to a photoplethysmogram (PPG) with different 
timings in relation to the ECG's R-peak. We found good 
agreement between HR with a mean absolute error (MAE) 
of 2.4 beats per minute (bpm) with standard deviation of 
4.6bpm. Conclusions: A position independent heart pulse 
signal from the Emfit mattress sensor was obtained in a 
range of subjects and validated by means of HR analysis. 

 
 

1. Introduction 

Unobtrusive mattress sensors such as the 
electromechanical film transducer (Emfit) offer great 
promise in measuring physiological signals from the heart 
—also known as ballistocardiography (BCG) and 
breathing. Mattress sensors have been used to monitor 

various conditions and physiological parameters such as 
breathing and heart activity [1]–[3]. Additionally, BCG has 
been advocated for its potential in cardiovascular 
monitoring [4]. 

Similar waveforms have been recorded using 
accelerometer-like sensors such as seismocardiography 
(SCG) [5] and gyrocardiography (GCG) [6], [7]. A recent 
review has studied the applications of BCG and SCG [8]. 
For instance, SCG [5] and GCG [9] present similar 
waveforms to the BCG recorded with the Emfit mattress 
sensor. Tadi et al. use the Doppler and ECG to reference 
the estimated hemodynamic variables using GCG [7]. 
Visual inspection of the GCG appears the same as the BCG 
in our experiments.  

Heart activity assessment using the Emfit mattress has 
been previously studied and compared with accelerometers 
[10]. Emfit mattress has been evaluated to estimate heart 
rate (HR) and heart rate variability (HRV) [1], [11]. Also, 
recent research has benchmarked some of these algorithms 
[12], [13]. 

In practice, the BCG shapes change with the body 
position with respect to the mattress [14], mattress type, 
and sensor size and position. As a result, the I-J-K waves 
do not always appear visible as they are described in the 
literature. It also depends on sensor size, mattress type, and 
subject's body (weight and BMI). Hence, being unable to 
use similar techniques to estimate pulse transit times and 
count heartbeats using time-based methods. Many of these 
reset of position. Paalasma et al. use clustering methods to 
detect individual heartbeats and reset the algorithm by 
position [15]. Similarly, Brüser et al. re-train the peak 
detector after movement detection [1].  

Source separation techniques based on non-negative 
matrix factorization have been used in single-channel 
source separation [16] and recovery of cardiac and 
respiratory sounds [17]. In this study, we use a source 
separation method based on the amplitude spectrogram 
(AS) to isolate a signal and estimate heart rate (HR) [18].  

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.304



2. Subjects and Signals 

A total of 33 patients suspected of sleep-disordered 
breathing (SDB) took part in the study. Three recordings 
were omitted due to low-quality signal or electrical 
artefacts in the Emfit signal. In total, 24 men and six 
women between 25–60 years old with body mass index 
(BMI) varying from 22–54 kg m2. Patients were referred 
to the Sleep Laboratory of Tampere University Hospital. 
Informed consent was obtained before recordings. The 
regional Ethics Committee of Tampere University 
Hospital area approved the study. 

A full extended Polysomnography (PSG) was recorded. 
The PSG included a standard EEG montage, submental 
and bilateral anterior tibialis electromyograms (EMG), 
electrooculography (EOG), body position, ECG, inductive 
thorax and abdominal belts, piezosnore-sensor and a 
trachea microphone were placed on the lateral side of the 
neck and over the suprasternal notch of the trachea, 
respectively. Pulse wave and SpO2 were recorded with a 
pulse oximeter (8000AA, Nonin Medical, Plymouth, MN, 
USA). The Emfit mattress sensor with dimensions 32 cm 
× 63 cm × 0.4 cm was positioned under the thoracic area 
under the bed mattress. The sampling rate for Emfit and  
ECG was set to 200 Hz for the Emfit sensor. Signals were 
recorded with the Embla N7000 and evaluated using sleep-
staging software called Somnologica† (Flaga, Iceland). 

Sleep recordings were scored by the standard scoring 
method by a clinical neurophysiologist  (Iber 2007). The 
apnea-hypopnea index (AHI) was estimated as the number 
of obstructive apnoea and hypopnea events per hour of 
sleep (Berry et al. 2012). Arousals were scored according 
to the criteria of the American Sleep Disorders Association 
(ASDA 1992).  
Representative normal breathing (NB) epochs were 
selected for a maximum duration of 10 minutes per patient 
by an experienced neurophysiologist. NB periods did not 
contain snoring, apneas or hypopneas. NB epochs were 
divided into 60s non-overlapping epochs for further 
analysis. 
 
3. Methods 

Signal Pre-processing: The Emfit signal was filtered with 
a high-pass finite impulse response (FIR) filter designed 
with a Hamming window, with a cut-out frequency 6Hz 

and a 1Hz transition band. 
Emfit pulse (EP) estimation: The procedure is depicted 

in Figure 1. The Emfit signal was filtered with a low pass 
filter (LPF) at 40 Hz and decimated by a factor of 5. The 
resulting signal was filtered using a modified discrete 
cosine transform (MDCT) 12-unit bank filter followed by 
halfwave rectification and a low pass filter. Next, the short-
time Fourier transform (STFT) of each resulting signal is 
estimated. Eight of the 12 resulting spectrograms were 
selected to calculate the non-negative real-valued tensor 
using Kim and Park's Matlab implementation [19]. A 
schema of the signal isolation is shown in Figure 1. Similar 
schemas have been used in monaural sound source 
separation [20]. The resulting signal was then up-sampled 
to 200Hz as in the original Emfit signal to compare with 
other signals from the dataset and to increase the accuracy.  

HR estimation: HR is estimated using the resulting EP. 
This method has multiple parameters that can be tuned to 
produce a sinusoidal-like signal suitable for spectral and 
time peak detection methods. The heart rate (HR) is 
estimated using spectral estimation in the following 
manner: The separated EP is segmented into 1-minute 
epochs. An initial HR estimate is calculated at minute-to-
minute values. This naïve method is a method designed to 
be a bit more robust to temporary low SNR due to artefacts. 
The 1-minute epochs are divided into 10-second windows 
with a 50% overlap. This window is chosen for simplicity: 
several windows have been used in literature, from 8s to 
one minute [1], [11], [13]. The spectrum of each of the 
windows is estimated using Lomb-Scargle using an 
oversampling factor of 4. 

Subsequently, the peaks between [0.6–1.7] Hz are 
estimated; these correspond to [42–102] bpm. The 
maximum peak is compared with the lower 90th percentile 
of the peaks. Then, if its height is two times the standard 
deviation of their distribution, it is marked as the prominent 
peak. If there are prominent peaks in the 1-minute epoch, 
the heart rate is estimated using the median of the 90th 
percentile of the prominent peaks. If no prominent peaks 
exist, the median of the 90th percentile of the peaks is used. 

 
 
 
 
 
 
 

 
Figure 1. Schema of the source separation signal. NTF: Non-negative tensor factorization. MDCT: modified discrete cosine 
transform. LPF: low pass filter.
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Figure 2. Emfit spectrogram and resulting Emfit Pulse (in 
white) 
 

 
Figure 3. Overlap of the time signal ballistocardiogram 
(BCG), the isolated emfit signal / Emfit Pulse (EP), and 
electrocardiogram (ECG). 
 
4. Analysis 

HR performance evaluation: HR performance evaluation 
was evaluated using the mean absolute error (MAE) ( of 
the HR for each minute epoch: 

  (0.1) 

where i is the index of the minute-to-minute epoch. 
Additionally, the standard deviation (SD) of the mean 
errors across all patients. Inter-subject variability is 
measured using the mean of the MAE, and the SD of the 
MAEs. The SD provides insight into the robustness against 
the inter-patient variability. 
 
5. Results 

Figure 2 shows the spectrogram of one of the subjects, 
which shows the systolic and diastolic cardiac cycles. 
Overlapping the spectrogram, the ECG, and EP was 
depicted. 

Figure 3 shows an overlap of the BCG with the EP, 

BCG, and ECG. The variability of the ECG can be shown 
in the latter part of the ECG signal. The peak of the signal 
appears to be after the P-wave. 

Quantitative results are shown in Table I. Two of the 
subjects—marked with an asterisk—showed irregular 
ECG patterns causing the ECG-HR algorithm to fail; hence 
the approximated HR epoch average using Somnologica 
software (Embla, Iceland) was estimated for those two 
patients. Average MAE and deviation were MAE 2.4 ± 
4.6bpm. 
 

Table I. HR estimation results expressed in mean 
absolute error (MAE). 

SID  P MAE SD SID  P MAE SD 
1 S 8.71 19.98 16 R 0.89 0.9 
2 L 0.68 0.5 17 L 1.44 0.96 
3 L 0.29 0.33 18(*) S 2.5 0 
4 R 0.58 0.38 19 L 1.3 0.45 
5 R 0.46 0.64 20 S 1.17 1.16 
6 L 1.15 1.02 21 R 0.65 0.24 
7 R 0.65 0.24 22 L 0.4 0.44 
8 R 0.65 0.48 23 R 1.55 1.4 
9 R 0.35 0.31 24 S 22.9 2.1 
10 L 1.2 1.13 25 R 0.8 0.91 
11 L 1.75 1.19 26 L 11.75 16.11 
12 S 0.63 0.43 27 R 0.7 0.35 
13 L 0.95 0.73 28 P 3.67 2.78 
14 S 1.76 2.78 29(*) S 1.27 1.12 
15 R 0.68 0.55 30 R 1.01 1 
    Total 2.42 ± 4.58 

Note: MAE: mean absolute error; SID: Subject ID; P: 
position. (*) Subjects whose HR reference is an average 
from Somnologica software. 
 
6. Discussion and Conclusion 

We presented a method to demodulate a heart pulse 
using amplitude. The resulting signal, the Emfit pulse, 
appears in every heartbeat and has a similar shape. On the 
spectrogram, systolic and diastolic times are clearly 
visible. 

The accuracy of the results is similar to some studies 
that report errors between 3.8–5 bpm [13]. Brüser reports 
much better results [1].  

Most methods implementation use segmentation 
methods to discard epochs, reducing the coverage, in 
search of  noise free epochs. The more holistic approach 
by Pröll [13] reports errors in 100% coverage. 
Nevertheless, when the SNR is low, usually due to body 
movements of any kind, the heartbeat is unlikely to be 
obtained, making näive or statistical methods —such as 
reporting previous HR the same or interpolating between 
clean epochs—suitable. However, they would not be 
factual but rather guesses. 
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In this study, we use clean breathing epochs for the 
analysis to validate and present the method. We obtain a 
signal that is similar to the PPG which will potentially ease 
existing approaches. 

Finally, our restuls on the spectrograms, we believe that 
deeper analysis of spectral signal would be useful for 
cardiovascular evaluation in steady position and points to 
future research directions. 
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